

NASA's Moon-to-Mars Planetary Autonomous Construction Technology Project: Overview and Status

International Astronautical Congress

Paris, France, September 18-22, 2022

R. G. Clinton, Jr., PhD, Principal Investigator, Moon to Mars Planetary Autonomous Construction Technology

Co-authors

- Dr. Jennifer E. Edmunson MSFC PM MMPACT
- Michael R. Effinger MSFC MMPACT Element Lead
- Chelsea C. Pickett MSFC MMPACT Test Lead
- Michael R. Fiske Jacobs Engineering Group/MSFC MMPACT Element Lead
- Jason Ballard CEO ICON Technologies
- Evan Jensen ICON PM MMPACT
- Melodie Yashar ICON
- Michael Morris Space Exploration Architecture
- Christina Ciardullo Space Exploration Architecture
- Rebeccah Pailes-Friedman Space Exploration Architecture
- Dr. Holly Shulman Alfred University
- Quinn Otte Radiance Technologies

Artemis: Landing Humans On the Moon Lunar Reconnaissance **Orbiter: Continued** surface and landing site investigation Artemis II: First humans **Gateway begins science operations** Artemis III-V: Deep space crew missions; Artemis I: First with launch of Power and Propulsion cislunar buildup and initial crew to orbit the Moon and human spacecraft **Element and Habitation and** demonstration landing with Human rendezvous in deep space to the Moon in the in the 21st Century **Logistics Outpost Landing System** 21st century Uncrewed HLS Demonstration

Early South Pole Robotic Landings
Science and technology payloads delivered by

Commercial Lunar Payload Services providers

Volatiles Investigating Polar Exploration Rover First mobility-enhanced lunar volatiles survey Humans on the Moon - 21st Century
First crew expedition to the lunar surface

LUNAR SOUTH POLE TARGET SITE

SUSTAINABLE LUNAR ORBIT STAGING CAPABILITY AND SURFACE EXPLORATION

MULTIPLE SCIENCE AND CARGO PAYLOADS I U.S. GOVERNMENT, INDUSTRY, AND INTERNATIONAL PARTNERSHIP OPPORTUNITIES I TECHNOLOGY AND OPERATIONS DEMONSTRATIONS FOR MAR

TECHNOLOGY DRIVES EXPLORATION

Rapid, Safe, and Efficient Space Transportation

Expanded Access to Diverse Surface Destinations

Sustainable Living and Working Farther from Earth

Transformative Missions and Discoveries

Building a Sustainable Presence on the Moon

• What infrastructure are we going to need?

Moon-to Mars Planetary Autonomous Construction Technologies (MMPACT) Overview

GOAL

Develop, deliver, and demonstrate on-demand capabilities to protect astronauts and create infrastructure on the lunar surface via construction of landing pads, habitats, shelters, roadways, and blast shields using lunar regolith-based materials.

MMPACT is structured into three interrelated elements:

- 1. Olympus Construction Hardware Development
- 2. Construction Feedstock Materials Development
- 3. Microwave Structure Construction Capability (MSCC)

OBJECTIVES

- Develop and demonstrate additive construction capabilities for various structures as materials evolve from Earth-based to exclusively *In Situ* Resource Utilization (ISRU)-based.
- Develop and demonstrate approaches for integrated sensors and process monitoring in support of in situ verification & validation of construction system and printed structures.
- Test and evaluate Olympus and MSCC products for use in the lunar environment.
- Validate that Earth-based development and testing are sufficient analogs for lunar operations

MMPACT – Current Partners

NASA Centers

- MSFC
- LaRC
- KSC
- JPL

OGA Leveraging

Potential:

- Innovation Unit US Air Force (AF)
- Contributing:
- AF Civil Engineering Center
- AF Special Operations Command
- Defense Innovation Unit
- Texas Air National Guard
- USAF

Government Systems Sys

Public/Private Partnerships

- · Dr. Holly Shulman
- ICON Build
- Radiance Technologies
- RW Bruce Associates, LLC
- Blue Origin
- Jacobs Space Exploration Group
- JP Gerling
- Logical Innovations
- Microwave Properties North
- MTS Systems Corp.
- Southeastern
 Universities Research

 Association
- · Southern Research
- Space Exploration Architecture (SEArch+)
- Space Resources Extraction Technologies
- Sioux Tribes
- Astroport

Technology Providers/ Contributing Partners: Academia

- · Colorado School of Mines
- Drake State
- · Mississippi State University
- · Pennsylvania State University
- University of Mississippi
- University of Nevada Las Vegas

SBIR/STTR

 Construction Scale Additive Manufacturing Solution

Potential Customer

Artemis

Autonomous Construction: Materials and Concepts for the Lunar Outpost

Regolith-based Materials and Processes:

- Cementitious
- Geopolymers/Polymers
- Thermosetting materials
- Regolith Melting/Forming
- Laser sintered
- Microwave sintered

MMPACT

SEArch+ Concept courtesy of ICON's Architecture Study

Early Process Development Results

• Controlled molten extrusion under vacuum from ICON's molten regolith extrusion system.

- Vacuum-cast specimens, using ICON's molten regolith extrusion system.
- Laser direct energy deposition process building a layer of a test specimen (brick).
- Laser direct energy deposition, additively constructed test specimen (brick).
- First high vacuum microwave sintering result showing solid sintered CSM-LHT-1G tile

Initial Construction Technology Demonstration Mission

Objectives:

- Establish a proof of concept for one or more materials/processes.
- Validate general material use and process viability for longer-term and more complex missions.
- Address technology gaps required for advancements in future autonomous construction capabilities.

MARS PLANETARY AUTONOMOUS CONSTRUCTION TECHNOLOGY

Initial Construction Technology Demonstration Mission, Candidate for Flight on DM-1 (2026)

Construction Roadmap

- Demonstrate downselected construction technique utilizing ISRU materials at small scale from lander base (horizontal and vertical subscale "proof of concept" elements)
- Results are critical to inform future construction demonstrations & characterize ISRU-based materials and construction processes for future autonomous construction of functional infrastructure elements
- Demonstration of remote/autonomous operations
- Initial demonstration of instrumentation and material
- Validation that Earth-based development and testing are sufficient analogs for lunar operations
- Anchors analytical models
- Rationale: Must prove out initial construction concept in lunar environment

Outcome

- TRL 6 achieved for autonomous ISRU consolidation into densified, subscale horizontal and vertical demonstration products
- TRL 9 for limited hardware and instrumentation that will be used on later missions

